

The Impact of High Oxygen Levels on Cerebral Perfusion

RYAN S. MAYES, PHD, MPH DEPUTY DEPARTMENT CHAIR & SENIOR TECHNICAL ADVISOR DEPARTMENT OF AEROSPACE MEDICINE U.S. AIR FORCE SCHOOL OF AEROSPACE MEDICINE 711TH HUMAN PERFORMANCE WING, AIR FORCE RESEARCH LABORATORY

23 MAR 2022

Disclosure Information

Dr. Ryan Mayes

- I have no conflicts to report.
- I have no financial relationships to disclose.
- I will not discuss off-label use and/or investigational use in my presentation.
- The views expressed are those of the author and do not necessarily reflect the official policy or position of the Air Force, the Department of Defense, or the U.S. Government.

Background

- Tactical aviation presents many environmental challenges to physiology
 - Hypobaria → Hypoxia
 - Secondary: VGEs, DCS
- To combat the threat of hypoxia, modern US military fighter jets employ oxygen schedules that deliver O₂ at relatively high levels
 - Sea-level ppO₂ ≈ 160 mmHg.
 - At 8000 ft, ambient $ppO_2 \approx 120mmHg$
 - US Military Fighters fly with FiO₂ (fraction of inspired oxygen) ranging from 40-100%
 - At 8000 ft, military O₂ schedules deliver ppO₂ ≈ 230-574 mmHg
- These military O2 schedules are built to protect against hypoxia, but hyperoxia is not without consequence.
 - Previous small studies have shown drops in cerebral perfusion due to hyperoxia
- Hypoxia has been studied extensively, but hyperoxia has not been well-studied
 - Defining the impact of hyperoxia-induced reductions in CBF is necessary to develop strategies providing maximal neuroprotection without conferring incidental risk

Lambertsen, C.J., et al. Oxygen toxicity; effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism. J Appl Physiol 5, 471-486 (1953).

Study Objectives

Goal: characterize duration and specificity of precipitous hyperoxia-related

reductions in CBF

Approach: in the absence of other flight-related operational stresses, we:

- employed magnetic resonance imaging (MRI) with arterial spin labeling (ASL) during exposure to 21% FiO2 and at four time points during a sustained 30 minute exposure to 100% FiO2.
- 2) Measured ventilation and circulatory acid-base status to inform our data analyses and interpretations.
- 3) Measured cognitive performance and cortical electroencephalographic activity at both 21% and 100% FiO2.

Courtesy of Dr. Michael Decker

Study Design

• Cerebral Blood Flow (CBF)

Results: Subject Demographics

- Sample consisted of:
 - Altitude-experienced DoD Active Duty officers & enlisted
 - Altitude-experienced civilians
 - Altitude-naïve subjects

Table 1							
Sex	Age	BMI	Occupational status AD = Active Duty Military; C= Civilian	Hypobaria with hyperoxia	Hypobaria with hypoxia	Hypobaria exposure with both hyperoxia and hypoxia	No history of hypobaria or hypoxia
Males n =17	43.29 ± 2.78	27.04 ± 0.66	AD=8, C=9	N=6	N=3	N=5	N=3
Females n =13	33.08 ± 4.04	25.83 ± 1.61	AD=5, C=8	N=4	N=1	N=1	N=7
2 tailed significance	p=0.04	p=NS					

Arterial Spin Labeling Methodology

Courtesy of Dr. Michael Decker

	which data	Regions per chart	19	Data to Plot	Original	Build
Indau	1 shal	negions per critic	10	Dete to Fiot	O Buildi	
moex	1 hashermad					
	2 B caudate authors	Pegio	ne 1 to 10	backgrou	nd	
	2 R. caudate nucleus	Negio	115 1 10 15	-R. caudat	te nucleus	
	3 L. caudate nucleus	15		-B-L caudat	e nucleus	
	4 K. putamen			A putain	103	
-	S L. putamen	1		R. globus	palidus	
-	6 R. globus pallidus			-L globus	pallidus	
	7 L. globus pallidus	DE		A nocles	is accumbens	
-	8 R. nucleus accumbens	0.5		-L. nucleu	s accumberis	
	9 L. nucleus accumbens				um	
	10 R. claustrum				US	
	11 L. claustrum	0		L. thalam	115	
	12 R. thalamus	1		R basal f	ior ebrain	
	13 L. thalamus			-0-L basel 6	orebrain	
	14 R. basal forebrain	40.3		R. lateral	geniculate nucleus	
	15 L. basal forebrain			and and a statis	genocatate nucleus	
	16 R. lateral geniculate nucleus	-1		L medial	geniculate nucleus	
	17 L. lateral geniculate nucleus					
	18 R. medial geniculate nucleus					
	19 L. medial geniculate nucleus					
	20 R. superior colliculus					
	21 L. superior colliculus	Regio	ns 20 to 38	t, supers	ar colliculus	
	22 R. inferior colliculus	5		-B. inferio	r colliculus	
	23 L. inferior colliculus	4.5		L inferior	colliculus	
	24 R. mamillary body			//R. mamil	ary body	
	25 L. mamillary body	4		L. mamil	ary body	
	26 L. Ventricular System	3.5	//	I lateral	usar system	
	27 R. lateral ventricle	3	//	/ third year	tricle	
	28 third ventricle	2.5	// /	-Brainsten		
	29 Brainstem		11/1	Cerebella	m	
	30 Cerebellum	2		-R. superio	or frontal gyrus (gm)	
	31 R. superior frontal gyrus (gm)	1.5		- R middle	frontal evrus (em)	
	32 L. superior frontal gyrus (gm)	1		-t-riddle	frontal gynus (gm)	
	33 R. middle frontal gyrus (gm)			R. pars og	percutaris (gm)	
	34 L. middle frontal gyrus (gm)	0.5		L pars of	ercularis (gm)	
	35 R. pars opercularis (gm)	0			langularis (gm)	
	36 L. pars opercularis (gm)			a part part in	aufnisus (Bud	
	37 R. pars triangularis (gm)					
	38 L. pars triangularis (gm)					
	39 R. pars orbitalis (gm)					
(20170801-ad 2-meanPERF 20170801-	asl 3-meanCBF 20170801-a	sl 3-meanPERF 20170801 ar	alvsis (A)	55 W	
	I service and a service of the strength	Service and I because a		1		
h						

Changes in perfusion are quantifiable between baseline and experimental conditions

The cerebral perfusion images produced by Scanner Perfusion image co-registered with anatomical image

Results: Translating ASL to CBF

- These maps reveal reductions in CBF between PASL #1 @ 21% FiO2 and subsequent serial PASL sequences following onset of 100% FiO2.
- ASL 1-location of axial plane is a sagittal cross section illustrating the neuroanatomical location of the coronal sections of ASL 1-ASL 5.
- This figure is positioned under the chart to facilitate comparisons of mean CBF values with actual changes we observed.

Results – Cerebral Perfusion with 100% O₂

I. With 21% O₂: Group values (N=30) of CBF at 21% FiO2

ASL #1: 48.84 ± 2.35 milliliters per minute per 100 grams of tissue (ml/min/100g),

II. With 100% O₂: Marked reduction in CBF in <u>every study participant</u> (30/30). Following onset of 100% FiO2 a) ASL #2: mean CBF values had fallen by 18%

b) ASL#5: CBF continued to fall to 63% of baseline at the final measurement (28-minute time point).

Percent change in cerebral perfusion during inspiration of 100% oxygen at 1 ATM.

AFR

Each ASL measurement required ~ 5 ½ minutes, followed by a 1 ½ minutes in which EEG was acquired.

Data points are at 7 minute intervals

THE AIR FORCE RESEARCH LABORATORY

Study Design

- Outcomes discussed:
 - ABG values to determine acid-base physiology with ASL derived values of CBF
 - Heart Rate
 - Respiratory Rate

Source: Decker Lab

Arterial blood gases obtained in n=26 pre-MRI and n=24 post MRI. Not all attempts at ABG were successful

PaO₂ values significantly increased during 100% FiO₂

PaCO₂ increased in many participants, decreased in some or remained almost unchanged in others.

No impact of sex upon Pa0₂ or PaC0₂

Cardiac and ventilatory functions are impacted by 100% FiO₂

Respiratory rates (n=13 female and n=13 males) did not differ while breathing 21% FiO_2 (Time 0). During 100% FiO_2 , male respiratory began to drop and became significantly lower.

Heart rate decreased following transition from 21% FiO₂ (63.54 ± 1.79 beats/min) to 100% FiO₂ (61.40 ± 1.61 beats/min). Heart returned to baseline values at the 15 minute time mark.

THE AIR FORCE RESEARCH LABORATORY

Calculations of systemic oxygen content

To determine systemic oxygen content (CaO₂) during exposure to 21% FiO₂ and again at 100% FiO₂, we used variables obtained from ABG samples.

$$Ca02 \ ml \ 0_2 / \ 100 \ ml \ = \ Hb_{avg} \ x \ 1.34 \ x \ \left(\frac{0_2 \ sat}{100}\right) + (Pa0_2 \ x \ 0.0031)$$

 Hb_{avg} = mean of Hemoglobin measured in ABG #1 & ABG #2 to account for sample variation 1.34 = the amount of oxygen (ml at 1 atmosphere) bound per gram of hemoglobin. 0.0031 = is a constant that represents the amount of oxygen dissolved in plasma *normative values of CaO*₂, at 21% FiO₂, range from 16-22

 DaO_2 is the product of total blood flow and the oxygen content of arterial blood (Ca_{O2}) MRI arterial spin labeling provided a quantitative measure of cerebral perfusion during both 21% and 100% FiO₂,

$$DaO_2 ml O2/min = CaO_2 x CBF ml/min/100g$$

Hyperoxia led to a *global* reduction in cerebral oxygen delivery

Global brain oxygen delivery is reduced while breathing 100% oxygen

Study Design

- Microcog
- EEG

Cognitive Testing

MicroCog[™] Cognitive Domains Assessed

- 1. General Cognitive Function
- 2. General Cognitive Proficiency
- 3. Information Processing Speed
- 4. Information Processing Accuracy
- 5. Attention/Mental Control
- 6. Reasoning/Calculation
- 7. Memory
- 8. Spatial Processing
- 9. Reaction Time

Image courtesy of Dr. Lisa Damato

MicroCog Analysis

- Windows-based computerized neuropsychological battery
- Automated computer scoring
- Short form (30 minutes)
- Nationally normed on a representative sample of 810 adults ages 18-89
- Age-specific norms for nine age groups; adjusted for three education levels (< high school, high school, > high school)
- Raw scores are converted to scaled scores, corrected for age and education adjusted norms

Hyperoxia resulted in enhanced performance

MicroCog mean scores in 21% versus 100% FiO₂

Methods: 64-Channel High Density – EEG

Brain Regions

- Frontal Pole (FP)
- Anterior Frontal (AF)
- Frontal (F)
- Frontal Central (FC)
- Temporal (T)
- Central (C)
- Central Parietal (CP)
- Parietal (P)
- Parietal Occipital (PO)
- Occipital (O)
- Inion (I)

EEG Processing

Signal Processing

- DC offset removed using a 1-Hz high-pass filter
- Electrical power noise removed using a 60-Hz notch filter
- 0.5-1 second windows excluded for eye blinks & movement-related artifact; channels with > 3% noisy signals excluded from analyses
- Distinct frequency bands identified: theta (4.0-7.99 Hz), alpha (8.0-13.99 Hz), and beta (14.0-30.0 Hz)

Data Analysis

- Bandpass filter applied for each frequency band (theta, alpha, beta)
- Computation of the absolute value of the Hilbert transform performed to extract the envelope of each signal channel
- Clean analysis windows summarized as the average of the integral of the Hilbert envelope signal to produce the "mean Hilbert integral."

Alpha EEG activity enhanced during cognitive testing at 100% FiO₂

Maroon-yellow coloring reveals brain areas with synchronous alpha activity. Reduced maroon-yellow coloring reveals areas with de-synchronized alpha activity (grey colored areas), suggestive of enhanced alertness.

Contradictory Findings + Anecdote = Re-Examination of Data

Anecdotal observations from pilots may be supported by hyperoxia-related increased cerebral perfusion within the Visual Cortex and motor output areas

- Developed new analysis tools to look at specific "regions of interest" in the brain (105 total)
 - New approach / cutting edge of neuroimaging research
- 4 cortical/subcortical regions showed marked INCREASE in <u>local</u> perfusion (29/30 subjects)
 - Globus Pallidus (bilateral)
 - Motor output (voluntary movement)
 - Middle and Superior Occiptal Gyri
 - Visual Processing
 - Angular Gyrus (not shown)
 - Processing of visuallyperceived words (also number processing and spatial cognition)

Summary of EEG Changes during Transition from Quiet Rest to Onset of MicroCog at 100% FiO₂

Cognitive testing in 100% FiO_2 led to changes in alpha activity that were significantly different in only a few cortical regions.

Those cortical regions included those that showed increased perfusion with 100% FiO₂

Frequency Band	Brain Region	MicroCog 21% FiO ₂ M ± S.E.M. (Range)	MicroCog 100% FiO ₂ M ± S.E.M. (Range)	2 tailed significance
	С	4.69 ± 0.31 (2.23-10.38)	5.08 ± 0.44 (2.41-14.88)	p=0.040
Alpha	Ρ	6.07 ± 0.35 (3.13-9.90)	6.54 ± 0.46 (3.28-13.25)	p=0.049
	т	6.15 ± 0.34 (3.40-11.44)	6.75 ± 0.45 (3.75-15.30)	p=0.006

Cortical Regions with Significant Changes in Alpha Activity Corresponded to Areas with Increased Cerebral Perfusion

Limitations

Study design limitations:

- Simultaneous measures of CBF with cognitive performance and EEG within the MR scanner would have been preferable.
 - Ultimately did not do so due to preliminary studies; sessions of 90+ minutes were associated with significant subject burden, increased motion artifact and discomfort.
- In retrospect, would have taken an additional ABG prior to the end of the MRI session
- Extrapolation to operational environment. Study did not include:
 - Altitude
 - Gz
 - Vibration
 - Positive Pressure Breathing
 - Mask dead space replication

Summary of Findings

- 1) Exposure to 100% FiO₂ within our MR scanner led to a rapid and sustained reduction in CBF.
- 2) This was accompanied by reduced global oxygen delivery to the brain.
- 3) Despite reduced CBF and DaO₂, cognitive performance was enhanced while breathing 100% FiO₂.
- 4) Cortical alpha EEG patterns suggest enhanced vigilance/attentiveness transition from quiet rest to onset of cognitive testing. Those alpha EEG changes were greater while breathing 100% FiO₂.
- 5) Regions of the brain involved in visual processing and motor control experienced increased local perfusion (29/30 subjects).
- 6) Brain areas with increased CBF also showed corresponding EEG changes.

Acknowledgments

Investigative Team

- Michael Decker, PhD
- Lisa Damato, PhD
- Tod Flak, PhD
- Kingman Strohl, MD
- Chris Flask, PhD
- Joseph LaManna, PhD

Collaborators

- Lt. Col. Justin Elliott
- Lt. Col. Kevin Hall
- Bhaswati Roy, PhD
- Rajesh Kumar, PhD

Research Staff

- Aemilee Ziganti, BA
- Ali Abdollahifar, MS
- Mary Andrews, RRT
- Harlan Brick, RRT
- Shannon Donnola, BS
- Marcie Stopchinski, BS, RT

Thank You!

Contact: **Ryan Mayes, PhD, MPH** ryan.mayes.2@us.af.mil